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Introduction
Acute lymphoblastic leukemia (ALL), a very common 
childhood malignancy,1 results from the uncontrolled 
proliferation of lymphoid progenitors.2-4 Eighty-five 
percent of ALL cases account for B-cell lineage, while 
the rest affect T-cell progenitors.5-7 Several mutations 
are reported to be involved in the process of ALL 
development.8 ALL peaks at ages around 5 and 50.9 
Pediatric therapeutic regimens include corticosteroids, 
asparaginase, alkaloids, and antimetabolites.10 Despite 
all the advances in chemotherapy strategies and recent 
improvements in response to treatments, only 30%-
40% of adult ALL patients obtain long-term remission.11 
Therefore, new therapeutic approaches are required for 

the successful and effective treatment of ALL.
Cyclophosphamide, an alkylating agent, widely 

used to treat different neoplasms,12 has been reported 
to possess immunosuppressive properties as well. 
Cyclophosphamide treatment combined with other 
chemotherapeutics to treat ALL is under study by several 
clinical studies. The agent is highly cytotoxic, therefore, 
immunotherapeutics-combined (which possess high 
specificity and less toxicity) cyclophosphamide treatment 
can reduce its required and effective dose 13. Nowadays, 
small interfering RNA (siRNA) is widely used in cancer 
research to evaluate the role of different genes in the 
process of cancer.14 SiRNAs induce the degradation of 
the target mRNA, therefore silencing the target gene. 
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ARTICLE INFO Abstract
Background: Cellular-myelocytomatosis (c-Myc), an oncoprotein and a transcription factor, is 
involved in several essential cellular processes. The c-Myc expression level is highly regulated in 
normal cells. It has been proved that c-Myc expression is deregulated in malignant cells due to 
rearrangements and mutations. The overexpression of this molecule is also reported to be present 
in acute lymphoblastic leukemia (ALL) as well, which is correlated with an unfavorable response 
to treatment, poor prognosis, and decreased overall survival. The upregulation of c-Myc results 
in increased proliferation, cell growth, and survival of ALL cells. Hence, making it an ideal 
target for leukemia treatment. This study evaluates the effect of c-Myc silencing combined with 
cyclophosphamide treatment, an FDA-approved chemotherapeutic.
Methods: Peripheral blood and bone marrow samples (mononuclear cells) were derived from 
eleven ALL patients. To silence c-Myc, small interfering-RNA (siRNA)-lipofectamine was used. 
The efficacy of gene silencing was assessed by the qRT-PCR test. Next, the effect of c-Myc 
silencing combined with cyclophosphamide treatment in ALL primary cells was evaluated using 
a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) test.
Results: ALL cells were successfully transfected with c-Myc-siRNA. Also, treating cells with 
cyclophosphamide exerted a slight fall in the c-Myc mRNA level. The MTT test revealed that 
following the inhibition of c-Myc by siRNA, the viability of primary ALL cells decreased in 
response to cyclophosphamide treatment. Also, it was discovered that silencing c-Myc with 
siRNA combined with cyclophosphamide treatment significantly inhibits the growth of primary 
ALL cells compared to cyclophosphamide monotherapy. 
Conclusion: c-Myc possesses high potential in the treatment of several cancers. Our findings 
add ALL to this category as well. Silencing c-Myc sensitizes ALL cells to cyclophosphamide 
treatment and can help with the better treatment of the afflicted individuals.
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However, to safely deliver siRNAs into the cell, a vector/
carrier is required.14,15

The MYC family genes comprise three distinct genes 
including MYC (c-MYC), MYCN, and MYCL. All three 
genes code for transcription factors with a helix-loop-helix 
leucine zipper structure.16 Cellular-myelocytomatosis 
(c-Myc), a crucial cell cycle regulator, is coded by the 
c-Myc gene, located on 8q24.17 c-Myc forms a heterodimer 
with Myc-Associated factor X (MAX) protein. The dimer 
is responsible for most of the c-Myc functions. C-Myc 
functions as a transcription factor downstream of several 
cellular signaling pathways, and therefore its expression 
level is highly regulated.18 C-Myc highly regulates cell 
cycle progression, cell death, nucleotide metabolism, and 
proliferation.19,20 

The expression of c-Myc is reported to be dysregulated 
in various malignancies.20 Several hematological 
neoplasms have also been reported to show c-Myc 
aberrant expression, including Burkitt lymphoma 
(BL), diffuse large B cell lymphoma (DLBCL),21,22 
and multiple myeloma (MM).23 Allen et al reported 
the c-Myc overexpression in B-ALL cells, which was 
correlated with poor prognosis, organomegaly, and 
elevated risk of long-term disease.19 Based on another 
study, B-ALL cells express c-Myc, which correlates with 
the expression of P53, mutations of TP53, and decreased 
overall survival.24 According to a case report, c-Myc 
rearrangement with Bcl-2 in a B-ALL patient severely 
weakened the patient’s prognosis. The patient presented 
with a significant increase in extra-nodal infiltration and 
disease progression, which ended up in no response to 
treatment and death.25

In the case of T-ALL patients, adults, in particular, 
the cure rate is only around 50% and only 7% of the 
afflicted people maintain overall survival after five 
years.26,27 Abnormal c-Myc expression keeps T-ALL 
leukemic stem cells active, and c-Myc silencing effectively 
stops leukemogenesis.28 C-Myc has been reported to be 
essential for T-ALL development as well.29,30 In addition, 

it has been found that through aberrant signaling of the 
NOTCH pathway, chromosomal translocations, and 
unknown mechanisms, c-Myc is upregulated and over-
activated in T-ALL cells.31

According to a study, following the silencing of 
c-Myc, the viability of DLBCL cells in response to 
cyclophosphamide was decreased significantly, compared 
to cells only treated with cyclophosphamide 32. However, 
the results in the case of ALL are scarce. Therefore, our 
study is one of the leading and most novel studies in this 
field.

Considering the sufficient evidence on the role of 
c-Myc in ALL and its progression, as well as the effect of 
silencing it in other hematological malignancies, and due 
to the scarcity of data regarding ALL, this study aimed to 
investigate the effect of silencing c-Myc in combination 
with cyclophosphamide treatment. To our knowledge, 
this is one of the most pioneering studies evaluating the 
effect of this combination therapy on these cells. 

Methods
Materials
Cyclophosphamide was supplied by Cayman Chemical 
Company. Human c-Myc gene targeting siRNA was 
bought from Santa Cruz Biotechnology, Inc. (catalog 
number: sc-29226). The 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl-2H-tetrazolium bromide MTT Assay Kit 
was supplied by the American Type Culture Collection 
(ATCC® 30-1010K).

Patient samples
Cellular samples were collected from eleven confirmed 
ALL patients at Shahid Ghazi Hospital, Tabriz, in 
accordance to the declaration of Helsinki. Patients’ 
demographic data are presented in Table 1.15 Using Ficoll 
PaqueTM Plus (GE Healthcare, Uppsala, Sweden) and a 
centrifugation system, mononuclear cells were separated 
from the whole blood according to the instructions 
provided by the manufacturer. Next, the separated cells 

Table 1. Patients’ characteristics 

Patients Age (y) Sex
WBC

(x103/mL)
Platelet

(x103/mL)
Hb

(g/dL)

LDH level
(Nl: Up to 
480 U/L)

Hepatomegaly Splenomegaly Lymphadenopathy
C- ALL Ag

(CD10)
( % )

Subtype

1 3 F 106.3 23 8.2 1801 Yes Yes Peripheral 83 Pre B-cell

2 11 M 5.1 39 12.2 1372 Yes Yes No 90 Pre B-cell

3 4 M 2.5 52 6.6 395 Yes Yes Peripheral 23 Pre B-cell

4 10 M 8 141 10.3 360 Yes Yes Peripheral 0 Pre B-cell

5 8 M 10.4 66 8.7 701 No Yes No 92 Pre B-cell

6 8 M 4,02 74 9.8 1283 Yes Yes No 0 Pre B-cell

7 6 M 9.9 8 2.4 375 NO Yes No 79 Pre B-cell

8 11 M 6.5 54 9.8 2437 Yes No Peripheral 0 Pre B-cell

9 12 M 74.2 21 9.9 1284 Yes Yes Mediastinal 0 T-cell

10 4 M 41.3 53 11.5 1525 Yes Yes Mediastinal 0 T-cell

11 9 M 56.4 57 10.1 1367 Yes Yes Mediastinal 0 T-cell

Abbreviation: WBC, white blood cells; LDH, lactate dehydrogenase; CALL Ag, Common ALL antigen; Hb, hemoglobin.
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were cultured in RPMI-1640 containing 20% FBS and 
2% L-glutamine. Viable cells were counted prior to any 
downstream analysis.

Cell transfection with siRNA
The cells were seeded at a 1 × 105 concentration per well 
in 96 well plates and were incubated for 24 hours at 37 
°C. Next, lipofectamine 2000 (Invitrogen) was used 
to transfect cells with siRNA. C-Myc siRNA, control 
siRNA, and lipofectamine were diluted at recommended 
concentrations based on the instructions of the 
manufacturer with the opti-MEM medium. Subsequently, 
the compounds were mixed and incubated for 20 minutes 
at 24 °C. Finally, the cells were treated with the compounds 
containing 50 pM of siRNA for 24 or 48 hours.

Gene expression analysis 
After the cell transfection with siRNA, a qRT-PCR test 
was run to ensure the efficient transfection of cells. First, 
using TRIzol Reagent (Invitrogen) the total RNA of ALL 
cells extracted. RNA was then transcribed into cDNA 
and stored at -20 ̊C. Next, SYBER Green PCR Master 
Mix (Thermo Fisher, US) was used to run a qRT-PCR 
with 1 μl of cDNA by a light-cycler 480 qRT-PCR system 
(Roche). The 2-ΔΔCT method was used to relatively measure 
the expression level of genes to β-actin mRNA level. The 
following primers were used: c-Myc Forward (F) primer: 
5’-CCTGGTGCTCCATGAGGAGAC-3’, c-Myc Reverse 
(R) primer: 5’- CAGACTCTGACCTTTTGCCAGG -3’,33 
β-actin F primer: 5’- CACCATTGGCAATGAGCGGTTC 
-3’, and β-actin R primer: 5’- AGGTCTTTGCGGATG 
TCCACGT -3’.34

Analysis of growth inhibition
To determine the Ic50 values for PBMCs and BMMCs, 
cells were cultured with increasing concentrations of the 
cyclophosphamide (5, 10, 15, 20, 25 μM). Subsequently, an 
MTT test was performed. The concentration that stopped 
cellular growth to 50% was calculated using GraphPad 
Prism V9.

To assess the effect of the combinational groups on the 
growth of cells, an MTT test was performed. Briefly, patient-
derived cells were inoculated into a 96-well plate (1 × 104 
cells/well) and incubated for 24 hours. Subsequently, cells 
were subjected to the following mixtures for 24 or 48 
hours; untreated, lipofectamine, scramble siRNA, c-Myc 
siRNA, cyclophosphamide, lipofectamine-c-Myc siRNA, 
lipofectamine-c-Myc siRNA + cyclophosphamide, and 
DMSO (0.2%). 50 pM of siRNA and Ic50 of the drug were 
used in each group. Next, 10 μL of MTT reagent was added 
to each well and incubated for 4 hours. After incubating 
each well for 4 hours with 10 μL of MTT reagent, the 
medium was removed, and PBS was used to wash each 
well. A microplate reader (Thermo Fisher, Waltham, MA, 
USA) measured the absorbance of wells after 100 μL of 
DMSO was added to each well. Next, cell viability was 
calculated using this equation35:

[ ]( )
[ ]( )

OD treated well blank
Viability 1 00

mean OD control well blank
−

= ×
−

Statistical analysis 
The data were statistically analyzed by GraphPad Prism 
V9 and SPSS. Statistical significance was set at P < 0.05.

Results
Cells were efficiency transfected with siRNA using 
lipofectamine
To make sure that cells were efficiently transfected with 
siRNA, a qRT-PCR test was run.

We evaluated the effect of our treatments on c-Myc 
mRNA levels. Treating cells with lipofectamine-c-Myc 
siRNA significantly decreased the mRNA level of c-Myc, 
indicating the effective transfection of lipofectamine. 
The result was significant compared to the results of cells 
treated with lipofectamine alone, control siRNA, c-Myc 
siRNA without a vector, and untreated.

Also, we discovered that the c-Myc mRNA level 
was slightly decreased when cells were subjected to 
cyclophosphamide. The findings of the qRT-PCR test are 
presented in Figure 1.

The viability of cells in response to cyclophosphamide 
was decreased following the silencing of c-Myc 
The IC50 = 22 μM for BMMCs and IC50 = 19 μM for 
PBMCs were measured by MTT tests following 24 
hours incubation of cells with cyclophosphamide 
(Supplementary file 1, Figure S1).

Next, we aimed to evaluate the co-treatment effect of 
c-Myc silencing with cyclophosphamide on the growth 
of cells by running an MTT test after 24 or 48 hours 
incubation with the various treatments. The results are 
presented in Figures 2a and 2b.

We noticed that treating cells with lipofectamine-c-
Myc siRNA, resulted in a considerable fall in viability, 
even though this effect was not as considerable as 
the effect of cyclophosphamide treatment. Next, the 
combined treatment effect was evaluated. The results 
indicated that cells with silenced c-Myc and treated with 
cyclophosphamide demonstrated the highest level of 
apoptosis compared to treatment with cyclophosphamide 
alone. The results were comparable to the controls, 
including untreated, treated cells with lipofectamine, and 
bare siRNA.

Therefore, inhibition of c-Myc sensitizes ALL primary 
cells to cyclophosphamide and helps with the better 
elimination of the neoplastic cells. Also, we found the 
treatment effect to be increased over the subsequent 24 
hours of incubation.

Discussion
ALL, a neoplastic disease of the hematopoietic system, 
is characterized by the repletion of lymphoblasts in 
several organs.2,3 ALL in the elderly is associated with 
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Figure 1. Treating ALL cells with anti-c-Myc siRNA silences the c-Myc gene. Transfecting mononuclear cells separated from peripheral blood (PB) 
and bone marrow (BM) of ALL patients (n = 11) with siRNA using lipofectamine silenced c-Myc gene, as investigated using qRT-PCR. * represents 
p < 0.05 and ** indicates P < 0.01. Abbreviations: PBMC, peripheral marrow mononuclear cell; BMMC, bone marrow mononuclear cell; ns, non-
significant

Figure 2. c-Myc silencing decreased the viability of ALL cells to cyclophosphamide treatment. Silencing c-Myc in mononuclear cells separated 
from peripheral blood (PB) and bone marrow (BM) of ALL patients (n = 11) enhanced the cytotoxicity of cyclophosphamide in ALL cells following 
24 hours (2a) and 48 hours (2b) incubation, determined by MTT test. * represents P < 0.05 and ** indicates P < 0.01. Abbreviations: PBMC, 
peripheral marrow mononuclear cell; BMMC, bone marrow mononuclear cell; ns, non-significant; DMSO, dimethyl sulfoxide
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chemoresistance and therefore poor prognosis.11 Thus, 
new approaches to cancer therapy are required for the 
successful treatment of ALL. Interestingly, c-Myc is 
reported to be highly involved in cancer course.

C-Myc, an oncoprotein, and a transcriptional factor 
dimerizes with MAX to bind the DNA molecule and 
regulate gene expression.36 C-Myc is reported to induce 
cell growth, nucleotide and lipid synthesis, glucose 
metabolism, ribosome biogenesis, transcription, and 
translation of several genes.37 Since c-Myc is considered 
an oncogene, it is strictly regulated in healthy cells.38 
Translocations, point mutations, and gene amplifications 
result in c-Myc deregulated expression which is reported 
in several types of neoplasms, hematopoietic malignancies 
in particular.18,39 In BL, t (8;14)(q24;q32) induces high 
levels of c-Myc which is involved in the cancer course.18,22 
Many studies have suggested that c-Myc is upregulated 
in several cancers. T-ALL cells express high levels of 
c-Myc. It is proven that c-Myc expression is essential 
for the growth, and proliferation of T-ALL cells and the 
development of T-ALL.40 The overexpression of c-Myc 
has been proven in B-ALL cells as well. This upregulation 
is directly correlated with the mutations of the TP53 gene, 
unfavorable prognosis, and decreased overall survival of 
B-ALL patients.19,24,25 Therefore, we aimed to silence this 
gene with siRNA and study its impact on the viability of 
cells in response to an FDA-approved anticancer drug, 
cyclophosphamide.

To efficiently transfect cells with siRNA, lipofectamine 
was used. As seen in Figure 1, lipofectamine-c-Myc 
siRNA treatment significantly decreased the mRNA level 
of c-Myc. In addition, the c-Myc mRNA level was found 
to be slightly decreased in response to cyclophosphamide 
treatment. In the cell group receiving both siRNA and 
cyclophosphamide, the lowest level of c-Myc mRNA 
was noted. This was evident in both BMMCs and 
PBMCs. Next, the result of gene silencing on the growth 
of cells was evaluated by an MTT test. We found that 
silencing c-Myc sensitizes both T-ALL and B-ALL cells 
to cyclophosphamide treatment, as the rate of growth 
inhibition was considerably elevated in this group 
compared to cyclophosphamide monotherapy. Moreover, 
the effect of the treatments was further augmented over 
the next 24 hours incubation. Therefore, c-Myc inhibition 
possesses high potential in eliminating ALL cells.

Our findings are in support of several studies evaluating 
the role of c-Myc in cancer. Akyurek et al report the 
correlation between c-Myc rearrangements, decreased 
overall survival, and poor prognosis in DLBCL patients.41 
According to Kendrick et al study, silencing c-Myc 
sensitizes DLBCL cells to cyclophosphamide treatment. 
Also, the combinational therapy induces a higher level 
of caspase-3 activity compared to cyclophosphamide 
monotherapy.32 Moreover, Skorski et al reported that 
following the inhibition of c-Myc, the proliferation of 
chronic myeloid leukemia (CML) cells was significantly 
decreased, which was comparable to the silencing of 

the BCR-ABL gene. The same research reports finding a 
synergism between BCR-ABL and c-Myc silencing. They 
added that the survival of CML mice xenograft models was 
improved following the silencing of the c-Myc gene.42,43 
Therefore, not only c-Myc expression possess prognostic 
value in cancers but also synergizes with several anti-
cancer drugs in eliminating neoplastic cells.

In this study, no significant difference was observed 
between patients’ samples in response to the treatments, 
which could be due to the scarcity of sample numbers. 
Therefore, future studies can examine the effect of this 
treatment in different subgroups of ALL as well as different 
samples of patients with larger statistical populations. 
In addition, the effect of this treatment can be studied 
with more advanced methods in leukemic stem cells to 
eliminate minimal residual disease, which was beyond the 
scope of this study. Also, studies can be conducted in vivo 
to measure survival following treatment.

Conclusion
To conclude, silencing c-Myc with siRNA decreases 
the viability of ALL cells. In addition, silencing c-Myc 
significantly sensitizes ALL cells to cyclophosphamide 
treatment. Future studies can confirm the existence of this 
additive effect between these two treatments with more 
samples and also investigate the effect of this combined 
treatment on different subtypes of ALL. Additionally, 
this data can help provide a new therapy approach for 
ALL patients with poor prognosis, due to its potential in 
improved elimination of ALL cells.
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